Излучение телефонов: мифы и легенды – и отчего зависит мощность передатчика телефона

Игорь Белецкий сделал интересный эксперимент, который наглядно демонстрирует мощность электромагнитного излучения телефона. Многие знают, что в момент в связи с базовой станцией мобильный телефон посылает самый мощный сигнал. В некоторых случаях его пик может достигать 1-2 ватт. Как это увидеть? Для этого нам понадобится обыкновенной светодиод, для большего эффекта в эксперименте использованы крупный супер яркий белый светодиод. Свч диод в данном случае d604. Кусочек провода длиной 8-10 сантиметров.

Диоды соединяются встречно-параллельно методом скрутки, потому что паять свч диоды нельзя. И потом к одному из концов крепится провод антенна. Выглядит все это вот так.

В схеме нет никаких источников питания. Светодиод должен дать свет, только используя энергия электромагнитного излучения вашего смартфона.

Сделаем звонок и приложим к телефону самодельный детектор сигнала. Вызов пошел, и мы можем наблюдать, как передатчик телефона начал подавать сигнал к базовой станции. Световые импульсы очень сильные. Чем дальше будете находиться от станции связи, тем сильнее будет исходящий сигнал вашего телефона.

К сожалению камера снимает с определенной частотой кадров. Многие световые импульсы просто не попадают в кадр. К тому же теряется яркость. В живую светодиод светится практически непрерывно и, действительно, супер ярко. Как же это работает?
Если мы возьмем медную катушку и поднесем к ней магнит, то получится такой же свечение. Другими словами, у нас огромная антенна катушки из тонкого провода с большим количеством витков, и магнитное поле, изменяющееся с низкой частотой.
А в эксперименте маленькая антенна, на магнитное поле изменяется с высокой частотой. И получается тот же результат. Чтобы зажечь такой светодиод, нужно совсем мало энергии. Но, учтите, все же большая ее часть прошла мимо этой маленькой антенны.

Если не получится достать свч диод, просто возьмите самый доступный диод 1n 4148. Соберите по той же схеме и тоже заметите эффект. Ну, правда, не так ярко.

Какой из этого можно сделать вывод? Когда вы набрали номер абонента, дождитесь, когда он ответит. Это будет видно на экране. А потом уже прикладывайте телефон к уху. Мощность сигнала, конечно, мизерная. Но все-таки. Это практически маленькая микроволновка.

Ученые: производители обманывают о мощности излучения мобильных телефонов

Для некоторых это может быть не новость, но поколению «смартфонов» излучение сотового телефона может создать большие проблемы.

Согласно новым исследованиям, риск развития рака из-за излучения сотового телефона очень велик. Хотя скептики могут сказать, что доказательства, полученные путём проведения опытов на животных не совсем убедительны, кто захочет пренебречь осторожностью, когда дело касается рака?

Известно, что ионизирующее излучение — например, от рентгеновских аппаратов — может увеличить риск онкологических заболеваний из-за эффекта «дробления», который оно оказывает на клетки. Но риски, связанные с неионизирующим радиочастотным излучением (радиоизлучением) сотовых телефонов измерить сложнее. Как сообщается в Scientific American, радиоизлучение сотовых телефонов точно имеет одно биологическое воздействие: оно нагревает ткани возбуждёнными молекулами.

В ходе недавних исследований, проведённых учёными из Национальной программы по токсикологии (NTP) этот риск был изучен более тщательно. Полученные данные показали, что крысы, подвергавшиеся радиочастотному излучению в течение длительного времени, стали более восприимчивы к развитию редкого типа опухоли, известной как «шваннома». Шваннома — это опухоль из клеток Шванна, которые являются особым типом нейронов в периферической нервной системе. Также были выявлены доказательства других видов рака.

Во время исследования, которое проводилось в течение двух лет, опытам подверглись 3 000 крыс. На сегодняшний день это крупнейшее исследование радиочастотного излучения и рака в США. Учёные NTP воздействовали на животных радиоволнами с частотой 900 МГц и 1900 МГц в течение примерно 9 часов в день с мощностью от 1 до 10 Вт на килограмм веса в «близком радиусе действия», имитируя воздействие на человека сотового телефона.

В результате эксперимента выяснилось, что после излучения с частотой 900 МГц самцы крыс стали более восприимчивыми к злокачественным новообразованиям шванномы сердца. Также были получены доказательства злокачественной глиомы головного мозга у самок крыс. Другие виды рака были очевидны как у самцов, так и у самок, хотя связь была неясной. С другой стороны, у обоих полов после воздействия такого радиационного облучения проявились нераковые виды опухолей.

При частоте 1900 МГц сомнительные признаки рака лёгких, печени и других органов также стали очевидными.

Ещё одно исследование, приведённое итальянскими учёными из Института Рамаццини, показало, что радиационное излучение при «дальнем радиусе воздействия» также влияет на здоровье крыс. Такой тип воздействия имитировал беспроводное радиоизлучение, которому мы подвергаемся круглые сутки. Интересно, что в этом исследовании были получены аналогичные результаты: у самцов крыс было значительно больше шансов «заработать» шванномы сердца.

Кроме того, прошлые исследования показали, что количество радиации, излучаемой сотовыми телефонами, значительно выше, чем заявляют производители.

Что же дальше?

Через один-два года станут известны результаты масштабного исследования COSMOS. Запущено исследование MOBI-Kids, призванное оценить возможную связь развития опухолей мозга у детей и подростков с воздействием излучения от мобильных устройств. Продолжаются исследования влияния и других мобильных технологий на здоровье человека.

Ясно, что группу риска составляют люди, использующие мобильный телефон чаще остальных, например — по работе. Допустим, будут придуманы новые, более безопасные способы связи — станут ли люди сознательно ограничивать себя в использовании мобильных устройств? Вероятный ответ — нет, потому что у нас в кармане вместе с телефоном лежат мощный компьютер, радио, интернет, фото- и видеокамера, связь с любой точкой Земли, любимый, в конце концов, инстаграм.

Мобильник — это часть жизни, а для некоторых — большая ее часть, и какими бы ни были заключения ученых, это достижение человеческой эволюции уже не отнять, и его остается лишь развивать в надежде, что радиоволны в конце концов потеряются где-то на пути мобило-прогресса.

Встать, суд идет

В октябре 2012 года Верховный суд Италии удовлетворил требование Инносенте Марколини к INAIL, национальному агентству по страхованию от несчастных случаев на производстве, о возмещении ущерба здоровью. Работая менеджером по продажам, Марколини на протяжении 12 лет по шесть часов в день пользовался мобильным телефоном, пока врачи не обнаружили у него опухоль ганглия тройничного нерва в районе левого уха. Причина появления опухоли осталась неизвестной, но Марколини утверждал, что это результат интенсивного использования мобильного телефона на работе. Опухоль была успешно удалена, но Марколини продолжали мучить сильные боли.

Суд низшей инстанции признал правоту истца, однако юристы INAIL подали апелляцию, ссылаясь на заключение Всемирной организации здравоохранения о том, что вредное влияние мобильных телефонов на организм человека не доказано. В 2010 году, когда слушалось это дело, ВОЗ считала именно так, хотя сегодня называет радиоволновое излучение мобильных телефонов «возможным канцерогеном».

Верховный суд принял окончательное решение в пользу Марколини. Адвокаты из Ассоциации защиты потребителей праздновали победу, поскольку был создан прецедент, позволяющий пользователям мобильных телефонов требовать компенсации через суд в случае развития опухоли. Но в целом, стоит отметить, что подобные иски достаточно редки.

Мнения сторон в этом деле разошлись по очевидным причинам — каждая из них воспользовалась теми источниками, которые доказывали ее правоту: в 2010 году накопилось достаточно исследований, чьи результаты говорили как о безопасности мобильных телефонов для здоровья, так и о вреде, который они способны причинить.

Какое бывает излучение

Как электромагнитное излучение (ЭИ) вообще может влиять на организм человека? Это зависит от его мощности, а также длины и частоты испускаемых волн.

Единственный источник волн низкой частоты (до 1 килогерца), с которым можно столкнуться в повседневной жизни, — это излучение промышленных электросетей частотой 50−60 герц. Эти волны легко проникают в тело, однако наведенные ими поля и ионные токи обычно очень слабые и опасности не представляют. Воздействие излучения частотой до 10 мегагерц исследовано мало из-за редкости подобных источников.

Гораздо больше исследований было посвящено воздействию радиоволнового излучения (от 10 мегагерц до 300 гигагерц). Оно способно проникать внутрь тела, вызывая вращение и колебания заряженных молекул, что приводит к локальному повышению температуры. Излучение большой интенсивности используется для бесконтактного нагрева, например в бытовых микроволновых печах или при обработке различных материалов в промышленности, а также в радиолокации, спутниковом телевещании.

Радиоволновое излучение — это колебания электромагнитного поля. В отличие от ионизирующего рентгеновского или гамма-излучения, радиоизлучение не способно разрывать химические связи или создавать ионизацию молекул в человеческом теле. Мобильные телефоны являются маломощными источниками радиоизлучения с частотой 450−2700 мегагерц и с пиковой мощностью в диапазоне 0,1−2 ватта, которая наблюдается при нестабильной связи с базовой станцией или перегруженности сети.

Радиоволновое излучение также используется в приборах для проведения магнитно-резонансной томографии (МРТ). Излучение малой интенсивности используется в средствах связи, в основном портативных: рациях, сотовых телефонах, устройствах Bluetooth и Wi-Fi, для создания беспроводных информационных сетей.

Инфракрасное (тепловое) излучение занимает диапазон от 300 гигагерц до 429 терагерц (при длине волны от 1 миллиметра до 780 нанометров). На долю теплового излучения приходится около половины всей энергии Солнца, достигающей поверхности Земли. Есть и другие его источники: огонь, инфракрасные излучатели, обогреватели. Избыточное воздействие инфракрасного излучения может привести к ожогам, перегреву организма и тепловому удару.

Видимый свет тоже относится к электромагнитному излучению. Длина его волн составляет 780−380 нанометров. В основном он отражается или поглощается кожей. Свет большой яркости может повредить органы зрения.

Около 10 процентов энергии в солнечном спектре приходится на ультрафиолетовое излучение с длинами волн 400−100 нанометров. «Ультрафиолет» воздействует в основном на кожу и прилегающие к ней ткани. В умеренных дозах он необходим для биосинтеза витамина D. В больших — может вызывать ожоги кожи, повреждения сетчатки и катаракту. По некоторым данным, ультрафиолетовое излучение способно также повреждать ДНК и служить причиной развития рака кожи (в 90 процентах случаев), в том числе меланомы.

Рентгеновское и гамма-излучение относятся к ионизирующему типу. Они легко проникают в ткани и могут как вызывать ожоги и лучевую болезнь, так и спровоцировать развитие рака. Рентгеновское и гамма-излучение являются также мутагенами и могут влиять на здоровье потомства.

К 2018 году число мобильных пользователей достигло 5135 миллионов человек с ростом в 4 процента в год. Больше всего мировых «держателей» телефонов среди жителей Бахрейна — 229 процентов населения, чуть меньше в Швеции — 153 процента, в России — 176 процентов.

Для мобильной связи в странах Европы и Азии используются частоты стандарты GSM 900/1800 мегагерц (Global System for Mobile Communications) с частотами приема 890−915 и 1710−1785 мегагерц и передачи 935−960 и 1805−1880 мегагерц. Максимальная излучаемая мощность мобильных телефонов стандарта GSM-1800 — 1 ватт, у GSM-900 — 2 ватта. Другой стандарт GSM — 850/1900 мегагерц — используется в США, Канаде, отдельных странах Латинской Америки и Африки. Частоты его приема — 824−849 и 1850−1910 мегагерц, передачи — 869−894 и 1930−1990 мегагерц.

Изменение класса

Радиочастотное излучение от мобильных телефонов Международное агентство по изучению рака относит к классу 2Б по канцероопасности — то есть опасность признана только потенциальной, пояснил «Известиям» председатель российского национального комитета по защите неионизирующих излучений доктор биологических наук Олег Григорьев.

По его словам, специалисты разделились на два лагеря: одни считают, что необходимо увеличивать степень опасности сотовых телефонов, другие против этого.

— В связи с этим Международное агентство по изучению рака приняло решение в промежуток с 2022 по 2024 год собрать все данные исследований, затем просуммировать их, проанализировать с помощью специального алгоритма и на основе показаний присвоить класс канцероопасности электромагнитного поля радиочастот, — рассказал эксперт.

Он уточнил, что сейчас ведутся исследования на животных, на моделях мобильных устройств, проводятся эпидемиологические наблюдения.

Что делать?

В январе этого года Международное агентство по изучению рака определилось с основными рекомендациями для пользователей сотовых телефонов.

— При разговоре необходимо использовать проводные наушники, относить устройство от головы не менее полуметра — 50 см и не класть на ночь возле подушки. Кроме того, смартфоны не рекомендуется использовать детям и подросткам до 18 лет и беременным, — предупредил Олег Григорьев, отметив, что у детей, пользующихся устройствами, влияние на здоровье начинается с расстройств нейрогенеративного характера (например, ухудшения сна и памяти).

Ограничить общение по смартфону для детей и подростков призывает и руководитель Hi-Tech Mail.ru Дмитрий Рябинин.

— У взрослых толщина костей черепа существенно отличается от детской, поэтому воздействие электромагнитного поля может сказываться негативно. Я бы рекомендовал перенести общение с детьми в мессенджеры, чтобы не подвергать их дополнительному риску, — уверен Дмитрий Рябинин. Эксперт советует также не разговаривать во время движения на большой скорости и в местах с плохим покрытием, а в помещении подходить ближе к окну.

Разговор по мобильному не должен длиться более двух минут, а минимальная пауза между звонками должна быть не менее 15 минут, рекомендовал россиянам в начале года Роспотребнадзор. В ведомстве считают, что безопаснее писать сообщения, чем держать трубку возле уха, а чтобы избежать увеличения интенсивности электромагнитного поля, нужно снимать очки с металлической оправой во время разговора. Не стоит и постоянно держать мобильный телефон при себе — например, в кармане брюк, на груди, поясе, а носить его лучше в сумке, отмечают в Роспотребнадзоре.

Расчет мощности излучения сотового телефона, поглощаемой в голове пользователя

Для расчёта ближнего и дальнего полей, излучаемых антенной системой сотового телефона в различных ситуациях его работы, использована программа HFSS.Исследовано влияние положение штыря антенны, открытой и закрытой крышки корпуса, а также покрытия корпуса на диаграмму направленности телефона и мощность, поглощаемую в голове пользователя. В расчёте поглощения мощности в модели головы человека использованы значения модуля электрического поля по линии, проходящей через слои модели головы.

Введение

Моделирование антенной системы сотового телефона реально только с помощью численных методов на электродинамическом уровне. Численные методы решения уравнений Максвелла, с учётом граничных условий, источников, металлических и диэлектрических объектов в пространстве, работают тем точнее, чем большими компьютерными ресурсами располагает исследователь. Добавление в анализируемое пространство тела человека, представляющее собой диэлектрический материал с большими потерями, значительно усложняет задачу. Однако, именно расчёт и уменьшение мощности, поглощаемой в теле человека, сейчас является одной из приоритетных задач проектирования сотового телефона. Норма поглощения мощности, по отношению к весу, опре-деляется величиной 1,6 Вт/кг. Решение этой задачи в настоящее время выполняется чаще всего методом FDTD, реализованном в программах XFDTD, FIDELITY и другими. Ниже показано, как можно применить для решения этой задачи более доступную программу HFSS (High Frequency Structure Simulator). Объектом анализа является сотовый телефон TM510 фирмы LE Electronics.

На рис. 1 показан вид сотового телефона с открытой крышкой-экраном LCD (Liquid Crystals Dysplay). Считаем, что для электромагнитных волн экран LCD является металлом. Корпус телефона состоит главным образом из экранирующих металлических слоёв и покрыт сверху пластиком LEXAN ( = 2,9, tg D = 0,006 (8,5 ГГц)) толщиной до 3 мм.


Рисунок 1. Вид сотового телефона с открытой крышкой и закрытой крышкой с LCD

Металлический корпус телефона сам по себе имеет сложную форму, поскольку в нём имеются функциональные лакуны сплошного металлического корпуса. Один из таких важных прорывов находится в месте антенны. Поэтому при моделировании телефона в первую очередь строится металлический корпус, в одной из точек которого пропускается вывод антенны.

В реальной конструкции телефона антенна подключена через фильтр к выходу усилителя мощности. Однако в модели, построенной в программе HFSS1, антенна запитывается снизу через коаксиальный кабель, поскольку одним из допущений HFSS является то, что мощность может либо излучаться либо поглощаться через плоскости, которые окружают анализируемое устройство.

Антенна анализируемого телефона спиральная, состоящая из двух последовательных секций — с редким и с частым шагом. Такая спиральная антенна предназначена для работы в двух частотных диапазонах. Антенна покрыта материалом с = 2,2 (тефлон).

Модель сотового телефона состоит из корпуса и антенной системы, в которую входит спиральная антенна и несимметричный вибратор (штырь), включенные параллельно.

Расчет удельной мощности поглощения

По определению, величина удельной поглощаемой мощности (SAR — Specific Absorption Rate) в пространстве :

(1)

где — проводимость материала в данном объёме, См/м; Е — напряжённость поля, В/м; þ — удельная плотность вещества, кг/м3.

Формулу (1) можно использовать, если известны значения Е в интересующих точках модели головы. Анализ поля можно ограничить точками, наиболее близко расположенными к антенной системе, или по наиболее характерным направлениям. Такими направлениями в анализе выберем линии, идущие перпендикулярно корпусу телефона и на высоте, близкой к высоте антенны.

В работе используется трёхслойная модель головы человека (табл. 1).

Таблица 1. Параметры трёхслойной модели головы человека для частот 0,9 и 1,9 (в скобках) ГГц

В литературе можно найти и другие, более подробные модели головы . В программе HFSS с помощью операций объединения и вычитания трёхмерных объектов с заданной проницаемостью и проводимостью можно построить модель головы любой сложности.

Метод анализа

Программа HFSS для расчёта электромагнитного поля во всех точках анализируемого пространства использует метод конечных элементов (FEM).

Анализируемое пространство делится на театраэдры, и решается система уравнений для неизвестных (величины электрического и магнитного полей в вершинах тетраэдров).

Методика расчёта мощности, поглощаемой в голове пользователя, с помощью программы HFSS, состоит в использовании специального режима вывода величины поля — вдоль линии (LINE), пересекающей слои головы насквозь. В этом режиме можно рассчитать зависимость модуля поля от координаты удаления от антенны.

Погрешность метода конечных элементов, реализованного в программе HFSS, связана с тем, что разбиение на неодноразмерные тетраэдры даёт скачки напряжённости поля в промежуточных точках, поскольку в методе конечных элементов производится сшивание и выравнивание величин поля только в определённых точках пространства.

Поэтому поле, которое, предположительно, должно плавно спадать при удалении от источника, может дать скачки в решении, если разбиение грубое. При внесении в анализируемое пространство объекта, например, модели головы, эта погрешность может быть уменьшена, так как вершины тетраэдров (>рис. 3) располагаются на границе слоёв головы.


Рисунок 2. Телефон с открытой крышкой. Исходная конструкция телефона для анализа


Рисунок 3. Электрическое поле вблизи антенны, состоящей из секции с редким шагом и секции с частым шагом. Сверху виден штырь. Разбиение на тетраэдры показано в вертикальном сечении всего анализируемого пространства. Справа видны контуры сферы — модели головы

Расчет ближнего поля антенной системы сотового телефона

Ближнее поле антенной системы чаще всего носит реактивный характер, то есть направление перемещения мощности (вектор Пойнтинга) вблизи излучаемого объекта не обязательно по радиальной линии от точки излучения. Границей ближнего и дальнего полей считается дистанция, начиная с которой плоская волна распространяется строго от антенны.

Для получения информации о ближнем поле, необходимо с помощью постпроцессора вывести картину поля в сечении заданной плоскости. В этом случае программа HFSS также рассчитывает максимальное поле в какой-то точке (эту точку можно определить визуально по цвету) на этой плоскости.

Режим анимации постпроцессора влияет на свойства картины поля, но не влияет на значение максимальной его напряжённости. Ползунок регулирует только на соотношение цветов, создавая впечатление движения поля через плоскость.

Итак, для расчёта ближнего поля определяем несколько плоскостей, лежащих на удалении от задней крышки корпуса сотового телефона.

Анализ исходной структуры сотового телефона

Исходная структура (с закрытой крышкой и с вставленным штырём антенны) даёт результаты расчёта напряжённости поля, приведённые в табл. 2.

Таблица 2. Максимальные напряжённости поля в точках плоскостей, расположенных в сечениях при удалении от корпуса сотового телефона

Эти данные являются исходными, относительно которых рассчитываются поля и характеристики системы при изменении конструкции телефонной трубки. Пояснения результатов (табл. 2) приведены на рис. 4, где показаны две плоскости на удалении 18 и 100 мм от ближайшей стенки корпуса сотового телефона и картина поля в этих плоскостях, на которых можно найти точки с максимальной напряжённостью.

Рисунок 4. Картина напряжённости электрического поля в различных плоскостях, рассекающих модель головы. Постпроцессор программы HFSS

Диаграммы направленности в азимутальной и угломестной плоскостях рассчитаны для нескольких положениё по азимуту (для угломестной ДН) и для нескольких направлений по углу места (для азимутальной ДН):

Экспериментальные точки для данного телефона получены на специально разработанном фирмой Schmidt&Partners измерителе ближнего и дальнего полей NSI-97.

Анализ антенной системы с открытой крышкой сотового телефона

Телефон с открытой крышкой — другое положение конструкции, имеющее место после получения звонка пользователем и включения телефона на связь. Естественно, что чувствительность телефона не должна падать при открывании крышки. Построим модель, соответствующую рис. 2. Выполним электродинамический расчёт системы и выпишем максимальные напряжённости поля в плоскостях, расположенных на различном удалении от корпуса сотового телефона. Результаты расчёта на HFSS ближнего поля телефона без штыря, но с открытой крышкой, приведены в табл. 3.

Таблица 3. Напряжённости поля телефона с открытой крышкой

Для сравнения результатов желательно сделать нормировку по отношению к мощности, рассеиваемой антенной системой. Рассеиваемая мощность зависит от степени согласования антенны с источником. Однако, если коэффициент отражения 20log|S11| достаточно низкий, например -10 дБ, то можно считать, что напряжённости поля в зазоре коаксиальной линии во всех расчётах близкие, поскольку отражённая мощность составляет меньше 5%, что может дать такую же погрешность расчёта. Хорошее согласование на одной частоте обеспечить реально, хотя бы с помощью внешней согласующей цепи.

Сравнение табл. 3 с данными табл. 2 показывает, что напряжённость поля возросла при открытой крышке. Но поскольку крышка должна экранировать голову, это несколько неожиданный вывод, объясняемый тем, что вдоль LCD наводятся СВЧ тока, вторичное излучение которых и является источниками повышенной напряжённости поля в объёме модели головы.

Диаграммы направленности при открытой крышке телефона показаны на рис. 7 и 8.

Рисунок 5. Угломестная ДН исходной излучающей структуры

Рисунок 6. Азимутальная ДН антенной структуры

Рисунок 8. Азимутальная ДН

Анализ поля для антенной системы с выдвинутой штыревой антенной показал, что в этом случае поле более равномерно распределено в пространстве, хотя максимум поля расположен ближе к корпусу телефона.

Общий анализ антенной структуры в присутствии модели головы

Модель головы (рис. 9) создана объединением сфер и цилиндров для трёх диаметров, а затем вычитанием одного из другого. В результате получены 3 объекта: покрытие толщиной 1 мм, со свойствами кожи; следующий слой толщиной 3 мм с параметрами кости и далее, в глубину, материал с параметрами мозга.

Рисунок 9. Расположение модели головы и вертикально стоящий сотовый телефон

Такая модель головы в программе HFSS, совместно с сотовым телефоном, имеет следующие параметры расчёта:

  • количество элементов — порядка 15000–20000;
  • количество неизвестных — порядка 100000–120000;
  • требуемая память RAM — до 450–650 MB;
  • время счёта одной частотной точки на Pentium-III — 30 мин.

При выводе картины качественного распределения электрического поля можно задать режим логарифмического распределения поля. Картину поля в объёме модели головы можно детально просмотреть и изучить.

Большую ценность несёт информация о распределении поля в сечении плоскости (рис. 10). Такие плоскости можно задать вдоль всей модели головы, но наиболее информативная часть — сечения, ближайшие к корпусу телефона.

Рисунок 10. Распределение ближнего поля в сечении модели головы и телефонной трубки. От самого большого уровня (красный) до самого маленького (голубой)

Однако для точного расчёта SAR необходимо знать количественное распределение поля в пространстве. Для этого используется вывод характеристик поля вдоль заранее определённой линии, перпендикулярной корпусу телефона и идущей сквозь слои модели головы.

На рис. 11 правая координата x = 82 соответствует точке корпуса телефона, ближайшей к модели головы. Двигаясь влево от точки с координатой x = 82 до точки с x = 72, видим отрезок, где напряжённость поля особенно высока. Это пространство от корпуса телефона до головы.

Рисунок 11. Напряжённость поля вдоль оси X, по мере удаления от модели головы

Чтобы получить более подробную картину распределения напряжённости поля в пределах модели головы, вводим другой масштаб (рис. 12).

Рисунок 12. Картина напряжённости поля в первом и втором слоях модели головы (увеличенный масштаб в первых слоях головы, наиболее близких к корпусу телефона)

Рисунок 13. ДН в угломестной плоскости с головой, частота 0,8 ГГц

Рисунок 14. ДН в азимутальной плоскости с учётом модели головы, 0,8 ГГц

В зависимости от амплитуды возбуждающего источника (который может изменяться по синусоидальному закону), напряжённость поля также будет изменяться в каждой точке пространства, поскольку в ближнем поле высшие типы волн меняются линейно, но фазовые соотношения меняют картину поля в пространстве.

Таким образом, когда меняется мощность излучения, то амплитуды высших типов волн в каждой точке пространства изменяются линейно, но результирующее поле приобретает сложный характер. Мы имеем тут дело не с нелинейной средой, а с интерференцией (суммированием различных типов волн).

Если изменить параметры возбуждения, распределение ближнего поля изменяется к показанному на рис. 11 и 12. Такой характер распределения объясняется суперпозицией волн высших типов в ближнем поле антенной системы.

Результаты, показанные на рис. 12, используются для расчёта значений SAR.

В точке 1

В точке 2

В точке 3

Таким методом можно рассчитать поглощение мощности в любой точке модели головы. Из рис. 11 и 12, можно видеть, что внутри головы человека существуют точки, в которых наблюдается концентрация энергии. Из-за особенностей корпуса телефона и всей антенной системы происходит фокусировка ближнего поля в голове, из-за чего исчезает характер монотонного спада поля с удалением от корпуса телефона с антенной. Конечно, усреднённую мощность в пространстве этих точек нужно рассчитывать, используя статистический анализ. Однако расчёты показывают, что небольшие металлические предметы, например, серьги в ушах, наводя небольшие статистически устойчивые поля, могут давать значительные мощности в точках пространства тела!

Диаграмма направленности в направлении головы имеет провал в азимутальной диаграмме направленности, поскольку в этой части происходит затенение излучаемой мощности.

Рассчитанные диаграммы направленности, по сравнению с рис. 5–7, показывают на 1…3 дБ меньшее излучение во всех направлениях, однако более равномерное. Очевидное объяснение этому — рядом с антенной системой находится объект с поглощающими свойствами. Однако видно также, что азимутальная ДН почти одинакова для разных углов наклона.

Заключение

Таким образом мощная программа HFSS, вне зависимости от производителя — Ansoft или Agilent, обладает уникальными возможностями, позволяющими применить её для решения задач анализа антенной системы сотового телефона. Для примера, в конкретной конструкции телефона проведён анализ в различном положении штыря и крышки и получено, что:

  • в исходном положении антенны — с закрытой крышкой и невынутым штырём антенны диаграмма направленности антенной системы зависит от смещения антенны относительно оси симметрии корпуса. Сдвиг антенны от центра даёт смещение диаграммы направленности в азимутальной плоскости до 30º;
  • в исходном положении антенна «светит» ещё и вниз, причём даже более эффективно, чем вверх, при определённых углах направленности;
  • по сравнению с исходным положением сотового телефона — с закрытой крышкой и невытащенным штырём, открывание крышки приводит к значительной деформации диаграммы направленности в азимутальной плоскости. Провалы в диаграмме направленности увеличиваются с 2 до 8 дБ;
  • при вытаскивании штыря в телефоне с закрытой крышкой усиление антенны увеличивается примерно на 3 дБ, что показывает такое же увеличение общей чувствительности системы. Однако вытаскивание штыря также приводит к более распределённому поглощению мощности в теле человека, что подтверждает, что более распределённые антенные системы предпочтительнее точечных. Вытаскивание штыря приводит к уменьшению усредненного SAR. Однако, есть несколько точек, где локальный SAR увеличивается;
  • покрытие металлического корпуса материалом LEXAN изменяет резонансную частоту антенной системы сотового телефона в сторону уменьшения примерно на 200 MГц, что говорит о значительном влиянии покрытия на согласование антенной системы с приёмопередатчиком. Вообще увеличение массы корпуса телефона и его размера приводит к смещению резонансной частоты вниз; при внесении в поле излучения антенной системы модели головы значительно меняется ближнее поле и диаграмма направленности в азимутальной и угломестной плоскостях;
  • величина SAR, рассчитанная с помощью HFSS по порядку (0,2…3 Вт/кг), соответствует литературным данным и близка к измеренным данным (1…2 Вт/кг) для сотового телефона.

Очень важный для практики вывод, следующий из многочисленных расчётов: корпус телефона может концентрировать поле в отдельных точках, работая как зеркальный отражатель. Этот расчётный результат получен при виртуальном разрезании модели головы плоскостями, параллельными сторонам корпуса телефона. Скачки концентрации поля достигают 10 дБ при общей тенденции спада мощности поглощения к центру головы.

Литература

Переменчивые волны

Понятие SAR — Specific Absorption Rate (для своего смартфона можно проверить на этом сайте) — ввели для определения коэффициента воздействия излучения на человека за секунду использования мобильного телефона еще в 1990-х годах прошлого века. С 2002 года этот уровень замеряет федеральное ведомство по радиационной защите Германии — Statista. Согласно европейским нормам, его предельно допустимое значение — 2 SAR Вт/кг.

Этот показатель не постоянный, его уровень меняется в зависимости от множества факторов. Прежде всего от качества связи: если связь хорошая, энергии выделяется мало, а чем она хуже, тем выше излучение, отметил ведущий аналитик Mobile Research Group Эльдар Муртазин.

По его словам, колебания могут происходить при переключении частоты — например, при переходе с 4G на 3G, включении режима модема для раздачи интернета и увеличении либо сокращении расстояния до базовой станции.

— О влиянии на здоровье человека показания SAR мы ничего не знаем, но по умолчанию считаем, что чем цифры выше, тем хуже, — пояснил эксперт.

В России покупатели нечасто обращают внимание на уровень радиочастотного излучения, а больше интересуются техническими характеристиками, отметила PR-директор «M.Видео» Валерия Андреева. По ее словам, SAR можно узнать в техническом приложении к устройству или на сайтах в интернете в перечне характеристик смартфона.

Рейтинг безопасности

В прошлом году в ежегодный перечень Statista, в который входят 16 мобильных устройств с самым низким уровнем радиочастотного излучения, попали сразу восемь моделей компании Samsung.

Минимальный показатель коэффициента воздействия на человека в 2019 году зафиксирован у аппарата Samsung Galaxy Note8 (0,17 SAR Bт/кг). Такой же результат показала и модель ZTE Axon Elite.

На втором месте — Samsung Galaxy Note 10+ (0,19 SAR Bт/кг). За ней с 0,21 SAR Bт/кг следует Samsung Galaxy Note — такой же уровень излучения демонстрирует и Nokia 6. На четвертой позиции — Nokia 8 (0,22 SAR Bт/кг).

Пятый результат (0,24 SAR Bт/кг ) показали сразу четыре смартфона: Samsung Galaxy A8, Nokia 3.2, Nokia 2 и LG G7 ThinQ. Следующая строчка — вновь за южнокорейской продукцией: ее занимает Samsung Galaxy M20 (0,25 SAR Bт/кг). Замыкают рейтинг пять моделей с показателем 0,26 SAR Вт/кг — Samsung Galaxy S10, Samsung Galaxy S8+, Samsung Galaxy S7 edge, Nokia 7.1, Honor 7A.

Закладка Постоянная ссылка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *